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Abstract

We identify relevant parameter regimes in which aneutronic fuels can undergo fusion ignition in

hot-ion degenerate plasma. Because of relativistic effects and partial degeneracy, the self-sustained

burning regime is considerably larger than previously calculated. Inverse bremsstrahlung plays a

major role in containing the reactor energy. We solve the radiation transfer equation and obtain

the contribution to the heat conductivity from inverse bremsstrahlung.
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I. INTRODUCTION

It would be desirable to achieve controlled thermonuclear reaction that produces the

fewest neutrons or no neutrons. The most promising fuel with no neutron (sometimes called

advanced fuel) is proton-boron-11 [P + B11 → 3α(2.7 MeV)] and deuterium-helium-3 [D +

He3 → p(14.7 MeV)+α(3.6 MeV)]. However, in classical plasmas, self-burning of advanced

fuels is unlikely [1], because, at high temperatures, it seems that the bremsstrahlung loss

may exceed the fusion power produced.

In Fermi degenerate plasmas, the prospect of the aneutronic fuel burning can be very

different due to the reduction of ion-electron (i-e) collisions, which both allows the ion

temperature to exceed the electron temperature and reduces the bremsstrahlung loss. In

previous work [2, 3], it was showed that the fusion byproducts can be stopped primarily not

by electrons but by ions, thus allowing a regime of operation in which ions are hotter than

electrons, the so-called “hot-ion mode” of operation. This occurs when the density is more

than ne = 1029 /cm3; self-sustained burning is then achieved where the ion temperature is

more than 100 keV and the electron temperature is 30 keV. This regime has more favorable

energy balance than the equal temperature mode, and so can enable the self-sustained

burning of aneutronic fuel. The reduction of the i-e collisions can be also applied to D-

T burning to achieve high ion and low electron temperature. While much effort can be

expended to realize the hot-ion mode in conventional magnetic fusion [4–6], in degenerate

plasmas, such an effort is not needed, where the hot-ion mode occurs “naturally”. Also, a

related effect is that in the degenerate plasma regime, the reduction in e-i collisions relative

to classical plasma increases the current drive efficiency [7].

Previous calculations of the fusion ignition regime [2, 3] ignored the effects of partial de-

generacy and the relativistic effects on the i-e collisions, the reduction of the bremsstrahlung,

and the fraction of energy that goes from fusion byproducts into electrons, which are now

available [8]. In this paper, we use these result [8] to quantify more accurately the regime

for fusion burning, showing that the self-sustained burning regime of advanced fuel is sev-

eral times larger than the previous result [2]. Recently Leon et al. [9] showed that plasma

degeneracy lower the ignition temperature for D-T, and that for P-B-11, the ignition tem-

perature can be lower than 20 keV when ρ = 3.3 × 107 g/cm3. We show that the density

condition can be eased further. We also solve ρR-equation in the inertial confinement fusion
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and determine the pellet dimension. Furthermore, we show that inverse bremsstrahlung is

much more efficient than the Compton effect in the reabsorption so that the fuel is optically

thick.

This paper is organized as follows. In Sec. (II), based on [8], we identify the self-burning

regime of the aneutronic fuel, and solve a 0-D power balance equation to show that burning

is feasible. In Sec. (III), we solve ρR equation. In Sec. (IV), we consider various aspects

of the re-absorption mechanism and show that the fuel re-absorbs photons via the inverse

bremsstrahlung. In Sec. (V), a summary and conclusion are given.

II. REGIMES OF SELF-BURNING IN A DEGENERATE PLASMA

In previous work [2], we showed that the optimal fuel concentration, ε = nB/np, is 0.3

and the electron density should be larger than n0 = 6.69 × 1028(1/cm3) for self-burning of

P-B-11. For an example, when ne = 2n0 (the Fermi energy EF = 95 keV), we showed that

Te = 27 keV when Ti = 200 keV. In the D-He-3 case, we showed that as an example, for

ρ = 3 × 105(g/cm3) (EF = 90 keV) and nD/nHe = 0.1, Te = 35 keV when Ti = 70 KeV

for self-burning. However, this calculation was made using the classical bremsstrahlung

formula and zero electron temperature stopping frequency without relativistic corrections

and partial degeneracy effects [8]. We show in this section how these effect ignored will

expand the self-burning regime further.

A. 0-D power balance equation

We now integrate, numerically in time, the fuel evolution using the reduction formula in

radiation and stopping power from [8]. We assume that the fuel is homogeneous in space.

The densities and temperatures of electrons and ions are governed by the following equations

[10]:
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3

2
ne

dTe

dt
= Pie − PB + η(Te)PF ,

(Σini)
3

2

dTi

dt
= −Pie + [1 − η(Te)]PF ,

dn1

dt
= −n1n2〈σv〉 , (1)

dn2

dt
= −n1n2〈σv〉 ,

dnF

dt
= n1n2αF 〈σv〉 .

The bremsstrahlung losses, PB, is given in [11]; the fusion power, PF , is given in [12]; η, which

was analyzed in [8], is the fraction of energy that goes from fusion byproducts into electrons;

the densities of fusing-ion species are n1 and n2; the density of the fusion by-product is nF ;

we define αF as the number of F -particles per fusion; the energy input from ions to electrons

via Coulomb collisions, Pie, is given by Pie = (ΣiniZi/mi)(8/3π(e4m2
e/~

3)C(Te)(3Ti/2) (For

the definition of C(Te), look [8]).

By normalizing the above equation (the density by the electron density ne, the tempera-

ture by the Fermi-energy EF , and the time by the stopping time 1/τs = (8/3π)(m2
ee

4/~
3mn),

where mn is the mass of a neutron), we can simplify Eq. (1) in a dimensionless variables.
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dθe

ds
= (ΣiñiZ

2
i /mi) C(θe)θi − β (ΣiñiZ

2
i ) f(Te)

+2

3
η(θe)ñ1ñ2

4E
EF

γ(θi) ,

dθi

ds
=

(

ΣiñiZ2

i
/mi

Σiñi

)

C(θe)θi + 2

3
[1 − η(θe)]

4E
EF

ñ1ñ2

Σiñi

γ(θi) ,

dñ1

ds
= −ñ1ñ2γ(θi) ,

dñ2

ds
= −ñ1ñ2γ(θi) ,

dñF

ds
= +αF ñ1ñ2γ(θi) .

(2)

where ñi = ni/ne, θi = Ti/EF , θe = Te/EF , β = (8π/9)(e2/~c)3(mn~
2Ef/m

2
ee

4), C(θe), f(θ)

is given in [8], 4E is the energy produced per fusion, and γ(Ti) = ne〈σv〉(3π/8)(~3mn/m2
ee

4).

The same analysis can be performed for the D-He-3 fuel. We do not repeat the analysis.

However, the result of the numerical computation is presented in the next section.

B. 0-D Power Balance for the P-B-11

In Fig. (1), we show the time integration of the electron and the ion temperature, the

remaining fraction of Boron fuel for ne = 4 × 1028 cm−3 (EF = 43 keV) with the initial

condition of Te = 0, Ti = 200 keV and nB/nP = 0.25. We also plot the fraction of energy

from fusion byproducts to electrons as a function of time. Initially, the ion temperature

decreases in time: the fusion power is less than the energy dissipation from ions into electrons.

The electron temperature increases in time because electrons cannot radiate the energy input

from ions fast enough since the bremsstrahlung is much smaller than the classical prediction.

As electron temperature increases, i-e collisions decrease, and energy transfer from ions then

decreases. Thus, fusion power becomes higher than energy dissipation from ions to electrons,

and ion temperature increases. As shown, the maximum of electron temperature matches

with the minimum of the fraction of energy from fusion byproducts into electrons. According

to previous work [2], since ne is the below the critical density n0, there is no self-burning

regime. However, in that analysis, the partial degeneracy, the relativistic effect in the
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FIG. 1: The time integration of electron and ion temperature, the remaining fraction of Boron

fuel for ne = 4 × 1028 cm−3 (EF = 43 keV) with the initial condition Te = 0, Ti = 200 keV and

nB/nP = 0.25. Top left: the electron temperature (Y-axis: the temperature in keV, X-axis: the

time in the unit of 0.5 × 10−13 sec). Top right: the ion temperature (Y-axis: the temperature in

keV, X-axis: the time in the unit of 0.5 × 10−13 sec). Bottom left: The fraction of energy from an

alpha particle to electrons (Y-axis: re , X-axis: the time in the unit of 0.5 × 10−13 sec). Bottom

right: the fraction of remaining boron fuel nB(τ)/nB(0).

stopping power, and the reduction of the bremsstrahlung losses are entirely ignored. As

shown in the figure, the fuel is self-burning due to the fact that those ignored factor eases

the condition further. For too large or too low ε, the fuel will not burn due to the severe

radiation losses. We can show that, for this density, ε must be 0.2 < ε < 0.4 for the fuel to

be self-burning.

C. 0-D Power Balance Equation For the D-He-3

In Fig. (2), we show the same set of 0-D power balance equation for ne = 1028 cm−3

(EF = 16.9 keV) with the initial condition of Te = 78, Ti = 78 keV and nd/nhe = 0.1. Due

to the reduction of the i-e collisions, the fuel is self burning, and ion temperature reaches

200 keV.

In Fig. (3), we show the same set of 0-D power balance equation for ne = 4 × 1027 cm−3

(EF = 9 keV) with the initial condition of Te = 78 keV, Ti = 78 keV and nd/nhe = 0.1.
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FIG. 2: The time integration of electron and ion temperature, the remaining fraction of deuterium

fuel for ne = 1028 cm−3 (EF = 17 keV) with the initial condition Te = 78 keV, Ti = 78 keV and

nd/nhe = 0.1. Top left: the electron temperature (Y-axis: the temperature in keV, X-axis: the

time in the unit of 0.5 × 10−13 sec). Top right: the ion temperature (Y-axis: the temperature in

keV, X-axis: the time in the unit of 0.5 × 10−13 sec). Bottom left: The fraction of energy from an

alpha particle to electrons (Y-axis: re , X-axis: the time in the unit of 0.5 × 10−13 sec). Bottom

right: the fraction of remaining boron fuel nD(τ)/nD(0).

As shown, the fuel is self-burning. However, because EF is comparable to the initial proton

energy divided by electron-proton mass ratio, the assumption vF � v (v is proton velocity)

is not valid and there can be 100 % errors in i-e collision rate. However, this computation

suggests that D-He-3 can be burn for the density ρ ∼= 104 g/cm3 and the temperature

Ti
∼= 100 keV.

III. ρR EQUATION AND PELLET DIMENSION

To find the pellet dimension and total power, we solve the ρR equation (for a review, see

[13]) in the P-B-11 with ε = 0.3 and ρ = 2.0 × 105(g/cm3):

dx

dt
∼= np〈σv〉x(0.7 + x) , (3)

where x is the ratio of the deuterium density to the initial helium density; x = 0.3 at t = 0,

and x = 0 at total burn-up. The solution is x/(0.7 + x) ∼= 0.3 exp(−tnp〈σv〉). For the total
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FIG. 3: The time integration of electron and ion temperature, the remaining fraction of deuterium

fuel for ne = 4× 1027 cm−3 (EF = 9 keV) with the initial condition Te = 78 keV, Ti = 78 keV and

nd/nhe = 0.1. Top left: the electron temperature (Y-axis: the temperature in keV, X-axis: the

time in the unit of 0.5 × 10−13 sec). Top right: the ion temperature (Y-axis: the temperature in

keV, X-axis: the time in the unit of 0.5 × 10−13 sec). Bottom left: The fraction of energy from an

alpha particle to electrons (Y-axis: re , X-axis: the time in the unit of 0.5 × 10−13 sec). Bottom

right: the fraction of remaining boron fuel nD(τ)/nD(0).

burn-up, the confinement time tc = R/Cs must be longer than 1/np〈σv〉 ∼= 0.5 × 10−13 sec,

where Cs is the sound wave velocity, and R is the pellet dimension. Assuming Cs
∼=

√

nEF /ρ,

then R must be larger than 10−4 cm. In a conventional ρR equation: f = ρR/(ρR + β),

where f the burn fraction, and β = 3MCs/〈σv〉. We can estimate that for the D-He-3 or

the P-B-11, β ∼= 25 − 50 g/cm2. For the P-B-11 case, by compressing a pellet to a state

with ρ ∼= 105 g/cm3 and the radius R ∼= 0.002 cm, the input as the electron Fermi energy is

4 MJ and the output will be 160 MJ. In this case, the confinement time is estimated longer

than a picosecond and is long enough. For the D-He-3 case, by compressing a pellet to a

state with ρ = 104 g/cm3, and the radius R = 0.01 cm, the input as the electron Fermi

energy is 7MJ , and output energy will be 600 MJ. In this case, the confinement time can

be estimated to be longer than a picosecond and is long enough. The feasibility as a reactor

for either of these fuels is low because the gain is smaller than 100. The gain is 10 times

smaller than D-T fuel. We note that the gain can be as large as 1000 in D-T fuel [13].
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IV. RADIATION RE-ABSORPTION

The radiated photons are absorbed mainly via the inverse bremsstrahlung or the Compton

processes. Eliezer [10] has shown that, in some regime with a particular temperature range,

the Compton process dominates the inverse bremsstrahlung. We show in this section that

the opposite is true in our regime. For this, we develop the Green’s function approach and

calculate the heat conductivity due to photon-induced transfer.

A. Compton Effect

In the reference frame in which a electron is at rest, the Compton scattering cross-section

is given by the Klein-Nishina formula as

dσKN

dΩ
=

r2
0

2

ε2
1

ε2

(

ε1

ε
+

ε

ε1

− sin2 Θ

)

, (4)

where σT = 8π/3r2
0 = 6.65 × 10−25 cm2 is the Thomson cross-section, and ε (ε1) is the

initial (final) photon energy. The relationship among ε1, ε and Θ is given as ε1 = ε/[1 +

(ε/mec
2)(1 − cos Θ)]. If ε � mec

2, then ε1
∼= ε and the cross-section becomes the Thomson

elastic cross-section. By integrating Eq. (4) over the solid angle, the total Klein-Nishina

cross-section can be obtained as

σKN = +
3

4

1 + x

x3

[

2x(1 + x)

1 + 2x
− log(1 + 2x)

]

(5)

+
1

2x
log(1 + 2x) − 1 + 3x

(1 + 2x)2
,

where x = ~ν/mec
2. In non-relativistic regime (x � 1), it can be simplified as σ =

σT [1 − 2x + (26/5)x2].

Let us now estimate how much a photon travels before most of its energy is re-absorbed

by electrons. If the photon energy is small compared with the rest mass, the average energy

absorbed per a Compton scattering can be estimated as ε(ε/mec
2) from Eq. (5). The energy

equations for the photon can then be written as (dε/dt) = −neσT c(ε/mec
2)ε, whose solution

is ε(t) = 1/(1 + t/τC) with 1/τC = (neσT c)(ε0/mec
2), where ε0 is the initial energy of the
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photon. At t = t1/2 = τC , the half of the photon’s energy is re-absorbed by electrons. The

distance traveled by a photon during t = t1/2 can be estimated as follows. The photon

traveling can be considered as the random work (at each collision, the photon reduces its

energy by small amount and changes its direction randomly). Then, the photon position can

be obtained as a solution of the simple diffusion equation, whose solution is a Maxwellian

with only one undetermined parameter (standard deviation L). Since the average time

interval between the scattering is τn
∼= 1/neσT c, the diffusion coefficient D can be estimated

as D ∼= c2tn (assuming the photon is scattered isotropically). Then, at t = t1/2, the root-

mean square of the distance that the photon has traveled can be estimated as L ∼=
√

Dt1/2 =

(1/neσT )
√

mec2/ε(0). We can easily see that the less energetic the photon is, the more

distance it travels before it loses half of its energy. As an example, for electron density

ne = 1029cm−3, we obtain L ∼= 10−4 cm for a 10 keV photon . However, the actual L

is much larger than the result because the Compton scattering is much reduced from the

degeneracy.

B. Inverse Bremsstrahlung

Inverse Bremsstrahlung has been calculated classically by Dawson and Oberman [14], then

by Silin [15]. Later, Seely [16] calculated one-photon and multi-photon process using the

Born approximation and found that the result matches the result by Dawson and Oberman

[14]. The multi-photon process of inverse bremsstrahlung is refined later by a few authors

[17, 18]. We use some of the result from Shima [17].

The one-photon process in completely degenerate plasma and partially degenerate plasma

has been presented in [17]. In this section, we assume the complete degeneracy. From

Shima’s result, we write the absorption formula of one-photon process in laser field as

dW

dt
= 2πniZ

2
i neme

(

eE

meω

)2 (

e4

m2
ev

3
F

)

log

(

1

q

)

, (6)

where W is in the units of eV/cm3, vF is the Fermi energy, ω is the laser frequency, E is

the electric field strength of the laser, and q = ~ω/2mev
2
F . Note that the electric field and

photon density can be related as np~ω = (E2/8π), where np is the number of photon per

volume. Using this, we can obtain the inverse bremsstrahlung time scale as
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νi(ω) = 4πniZ
2

i

(

e4

m2
ev

4
F

)

vF log(1/q)
ω2

pe

ω2
. (7)

As opposed to the Compton process, the photon is absorbed by just a one-step process. The

time scale ratio between the Compton process and the inverse bremsstrahlung is given from

the last section and Eq. (7) as

νi(ω)τC =
3

2

niZ
2
i

ne
(c/vF )3 log(1/q)

ω2
pe

ω2
Γ, (8)

where Γ ∼ O(c2k2
F/ω2) is much larger than one from the reduction of the Compton effect

due to the degeneracy. If νi(ω)τC > 1, the inverse bremsstrahlung dominates the Compton

effect. For example, when ne = 1029cm3 and Zi = 1, the inverse bremsstrahlung is faster

than the Compton scattering by more than a factor of 2 for a 30 keV photon. Note that

the self-burning regime identified in [2] has the electron temperature less than 30 keV, and

an energetic photon from the bremsstrahlung normally have energy less than 30 keV. The

inverse bremsstrahlung thereby dominates the Compton effect in our regime of interest.

Another time scale involved is the time in which an excited electron with energy E emits

most of its energy by photons. This problem is dealt in [8], and the frequency is given

from Eq. (26) in [8] as νB = (niZ
2
i σT c)(e2/~ve). The ratio between νi to νB is νi/νB =

3/2(c/vF )3 log(1/q)(ω2
pe/ω

2)(~vF/e2). We note that νi/νB � 1 unless ω � ωpe.

Let us summarize what we have done until now. Firstly, the Compton effect can be

ignored in comparison to the inverse bremsstrahlung unless the photon frequency is much

higher than the plasma frequency (~ωpe
∼= 7keV). Secondly, a photon travels during 1/νi(ω)

before absorbed by electrons via the inverse bremsstrahlung, and the excited electron radi-

ates photons with various frequencies during 1/νB. These photons are absorbed by electrons

again, and then re-radiated with different frequencies. Since νi/νB � 1 unless ω � ωpe, the

energy of photon will stay longer in the form of electron kinetic energy rather than in the

form of photon energy. Especially if a photon has energy less than the plasmon (ω < ωpe),

the time interval in which an electron radiates via bremsstrahlung is a hundred times longer

than the time interval in which a photon is absorbed via inverse bremsstrahlung. Thus, we

can safely assume that, for a photon ω < ωpe, the energy is instantly absorbed by electrons,

and such a photon does not exist any more in the plasma. Though it is well known that a

macroscopic wave cannot travel in a conventional plasma if ω < ωpe, the relevance of such a
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property to non-correlated photons from the inverse bremsstrahlung is apparently new.

C. Green’s Function for Inverse Bremsstrahlung

We now address the following question: given a photon with a frequency ω0 at the origin

at t0, how do its frequency and position evolve in time? or what is the energy density spread

ρ(ω, r, t : ω0, 0, t0) as a function of position and frequency?

The photon travels a distance δl0 = c/νi(ω0) in the direction of â0 and is absorbed by an

electron. Let us assume that an electron does not move its position and emits the photons

by the bremsstrahlung in time τB = 1/νB. Now, choose one of the photons emitted with

a probability weight proportional to the energy of the photon (what we are interested in is

energy not number of photons), and call it the first photon. The first photon travels the

distance δl2 = c/νi(ω1) in the direction of â1 and is absorbed by an electron. The electron

emits the second photon and so on. After n steps, the photon position is given as

δL = c

(

1

νi(ω0)
â0 +

1

νi(ω1)
â1 · · ·+

1

νi(ωn)
ân

)

. (9)

From Eq. (7), we can write the above equation as

δL = δl0

(

â0 +
ω2

1

ω2
0

â1 +
ω2

1

ω2
0

ω2
2

ω2
1

â2 + · · ·+ ω2
1

ω2
0

. . .
ω2

n

ω2
n−1

ân

)

. (10)

The time taken for this whole process can be estimated as T = nτB from the assumption

that νi/νB � 1. It is noted that δL is a random variable. We followed a path of the photons

for which a lot of alternative paths are possible. However, by summing up many trial paths,

each δL is statistically the same due to the law of large number. We thereby assume that

δL represent the whole paths soundly in the statistical sense and δL is a Gaussian.

In Eq. (10), a number of random variables are involved. Firstly, âi is the set of independent

random variables which is uniform over the direction with only constraint |âi| = 1. Secondly,

gi = ωi/ωi−1 are also independent random variables, and from Eq. (36) in [8], we note that

gi is distributed uniformly in the unit interval 0 ≤ gi ≤ 1. With these consideration, it is

trivial to show 〈δL〉 = 0 and

12



〈(δL)2〉 = (δl0)
2

[

1 +
1

3
+

(

1

3

)2

. . .

(

1

3

)n
]

= (δl0)
2 1

1 − (1/3)n+1
.

We can do the same analysis for ωn = ω0(ω1/ω0) . . . ωn/ωn−1 with the result:〈ωn〉 = ω0(1/2)n

and 〈ω2
n〉 = ω2

0(1/3)n. Assuming δL is a Maxwellian, we obtain the Green’s function ρ as

ρ(ω, r, t : ω,0, t0) = (
1

2π〈(δL)2〉)
3/2(

1

2π〈δω2〉)
1/2

× exp

[

−1

2

r2

〈(δL)2〉 −
1

2

(ω − 〈ωn〉)2

〈ω2
n〉

]

,

where n ∼= t/τB. The photon frequency exponentially decays with time and reach the cutoff

frequency ωpe quickly. We can eliminate ω in ρ by integrating ω out with the assumption

that the relevant time-scale for consideration is larger than τB. Then, the time independent

Green’s function ρ is given only as a function of the position and frequency as

ρ∞(r, ω0) = (
1

2π(δl0(ω0))2
)3/2 exp

[

−1

2

r2

(δl0(ω0))2

]

, (11)

For just one-step process, the Green’s function is given as

ρ1(r, ω0) =
1

8π(δl0(ω0))3
exp

[

− r

δl0(ω0)

]

, (12)

For an example, for a hydrogen plasma with ne = 1029cm−3 and a photon with ~ω0 = 30 keV,

we obtain δl0 = 10−5cm. This is much smaller than the pellet dimension that we estimated

in Sec. (III).

D. Non-Local Electron Energy Transfer Equation and Heat Conductivity

In the previous section, the inverse bremsstrahlung has been shown to dominate the

Compton effect in re-absorption mechanism for a reasonably low energy photon, and the

fuel can hold the radiated energy for much longer time than we expect. This makes it

necessary for us to include the re-absorption in the fuel evolution equation since most of

13



radiations are not lost but retained. Here, using the Green’s function we derived in last

section, we rewrite the full evolution equation and derive the heat conductivity.

As in Sec. (IIA), the evolution of the electron temperature is

3

2
n2

dTe

dt
= Pie − PB + ηWF + Wd − (niZ

2

i )neB(T ) . (13)

where Pie is energy input from hot ions, PB is the bremsstrahlung losses, WF is the fusion

power and η is the fraction of energy from the fusion by-product to the electrons, and Wd is

the electron heat diffusion via Coulomb collisions. From [8], the bremsstrahlung PB is given

as PB = K
∫

W (Te, ω)dω, where we write explicit dependence of W on Te from Eq. (29) in

[8]. As shown in the previous section, the radiated power is retained by electrons non-locally

at different locations. Thereby, PB is no longer given by the local quantity but by an integral

of the Green’s function:

PB(r) = +

∫

W (Te(r, ω)dω

(14)

−
∫

[
∫ ∞

0

ρ(r − r1, ω)W (Te(r1), ω)dω

]

dr1 .

As long as δl0(ω) � R with the fuel dimension R, the bremsstrahlung is not energy-loss

but diffusion. We can see readily that Eq. (13) becomes integro-differential equation, which

might be intractable.

However, when Te(x) is slowly varying, the bremsstrahlung PB in Eq. (14) has the form

such as PB = κ∇2Te, and κ is the heat conductivity from the radiative transfer. Let us

assume that the electron temperature has only linear x-dependence so that Te = T0 +

x(dT/dx), where dT/dx is very small. The energy flux through x = 0 plane from the

negative-x region to the positive-x region is

F+ = +

∫ ∞

0

dω

∫

x1<0

dx1dy2dz2

∫

x>0

dxdydz

× [ρ(r − r1, ω)W (Te(x1), ω)] .

The energy flux from the positive-x region to negative-x region, F−, can be similarly ob-

tained. The net flux, F = F− − F+ is then proportional to the dT/dx, whose coefficient is
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the heat conductivity:

κ = + 2

∫ ∞

0

dω

∫

x1>0

dx1dy1dz1

∫ ∞

0

da

×
[

ρ(a + x1, y1, z1, ω)
∂W

∂Te

x1

]

.

By using ρ1, we obtain

κ1 =
1

2
a1

∫ ∞

0

(δl0(ω))2∂W

∂Te

dω, (15)

where a1 is

a1 =

∫ ∞

0

da

∫ ∞

a

ds

[
∫ ∞

0

dt exp(−
√

s2 + t2)

]

. (16)

By using ρ∞, we obtain

κ∞ =
1

2

∫ ∞

0

δl0(ω)2∂W

∂Te
dω. (17)

V. DISCUSSION AND CONCLUSION

In summary, based on the correction of the stopping power from partial degeneracy, we

show that the self-burning regime is larger than the previous result [2]. We also show that

in re-absorption, the inverse bremsstrahlung dominates the Compton effect and the fuel is

optically thick for bremsstrahlung losses.

These results suggest an optimal ICF regime to produce net energy using advanced aneu-

tronic fuel. In this regime, the pellet mass is 1-20 times that of a D-T pellet, and the

dimension R in compressed state is 3-8 times smaller than that of a D-T pellet. The output

energy is 100-1000 MJ. The gain, defined as the ratio of the output to the total Fermi energy,

is 40 - 200. Furthermore, since all the fusion energy resides in charged particles, the energy

conversion efficiency is far better than for D-T fuels. However, unless a method for the

extreme compression regime here is devised, the burning of aneutronic fuel in this regime

might not be realizable. The creation of a hot spot is also problem: The hot spot must be

10 times hotter than the case of D-T. One might use a hybrid concept which uses uranium

inside the pellet [19, 20], or possibly chain-reaction involving D-T [3].
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There are several aspects that we ignored in the computation. First, while 0-D power

balance equation suggests also that it may be possible to burn the D-He-3 at densities

ne � 1028cm−3, the assumption that vF � V with V being the velocity of the fusion

byproduct breaks down at ne � 1028cm−3 since the proton is very energetic. Then, the

stopping power will be somewhat more than that we predicted. The treatment of the ion

stopping when vF
∼= V , however, is out of the scope of this paper. Second, due to the

degeneracy, the heat capacity of the electron gas is smaller than the classical electron gas.

As ions heat partially degenerate electrons, the electrons become hot more quickly than our

estimate in this paper, which will reduce the ion stopping. Therefore, the reduced heat

capacity will ease the burning condition. Third, in our simulation we included neither the

particle losses in the pellet nor the radiation re-absorption. Fourth, our treatment of the

relativistic effect breaks down when the electron temperature exceed 150 keV. While there

exists a more rigorous theory [21], it is not computationally tractable. A valid approximation

of the theory should be devised. The largest outstanding issue in this regime, however,

remains a practical means for the compression and creation of the hot spot.
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